Critical mass phenomena in higher dimensional quasilinear Keller–Segel systems with indirect signal production

نویسندگان

چکیده

In this paper, we deal with quasilinear Keller–Segel systems indirect signal production, u t = ∇ · ( + 1 ) m − v , x ∈ Ω > 0 Δ μ w $$ \left\{\begin{array}{ll}{u}_t&#x0003D;\nabla \cdotp \left({\left(u&#x0002B;1\right)}&#x0005E;{m-1}\nabla u\right)-\nabla \left(u\nabla v\right),& x\in \Omega, t>0,\\ {}0&#x0003D;\Delta v-\mu (t)&#x0002B;w,& {}{w}_t&#x0002B;w&#x0003D;u,& t>0,\end{array}\right. complemented homogeneous Neumann boundary conditions and suitable initial conditions, where ⊂ ℝ n \Omega \subset {\mathrm{\mathbb{R}}}&#x0005E;n ≥ 3 \left(n\ge 3\right) is a bounded smooth domain, m\ge : ⨏ for . \mu (t):&#x0003D; {\fint}_{\Omega}w\left(\cdotp, t\right)\kern2em \mathrm{for}\kern0.5em t>0. We show that in the case 2 2-\frac{2}{n} there exists M c {M}_c>0 such if either m>2-\frac{2}{n} or ∫ < {\int}_{\Omega}{u}_0<{M}_c then solution globally remains bounded, ≤ m\le m<2-\frac{2}{n} ω M>{2}&#x0005E;{\frac{n}{2}}{n}&#x0005E;{n-1}{\omega}_n exist radially symmetric data {\int}_{\Omega}{u}_0&#x0003D;M blows up finite infinite time, blow-up time m&#x0003D;2-\frac{2}{n} particular, critical mass phenomenon sense inf ∃ corresponding {\displaystyle \begin{array}{cc}\hfill & \hfill \operatorname{inf}\left\{M>0:\exists {u}_0\kern0.5em \mathrm{with}\kern0.5em {\int}_{\Omega}{u}_0&#x0003D;M\kern0.5em \mathrm{such}\ \mathrm{that}\ \mathrm{the}\ \mathrm{corresponding}\right.\\ {}\hfill \kern2em \left.\mathrm{solution}\ \mathrm{blows}\ \mathrm{up}\ \mathrm{in}\ \mathrm{infinite}\ \mathrm{time}\right\}\hfill \end{array}} positive number.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Surface critical phenomena in three-dimensional percolation.

Using Monte Carlo methods and finite-size scaling, we investigate surface critical phenomena in the bond-percolation model on the simple-cubic lattice with two open surfaces in one direction. We decompose the whole lattice into percolation clusters and sample the surface and bulk dimensionless ratios Q1 and Qb, defined on the basis of the moments of the cluster-size distribution. These ratios a...

متن کامل

Higher Dimensional Self-similar Spherical Symmetric Scalar Field Collapse and Critical Phenomena in Black Hole Formation

The higher dimensional spherical symmetric scalar field collapse problem is studied in the light of the critical behavior in black hole formation. To make the analysis tractable, the self similarity is also imposed. By giving a new view to the self-similar scalar field collapse problem, we give the general formula for the critical exponents in higher dimensions. In the process, the explanation ...

متن کامل

Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles

Recent work on stochastic interacting particle systems with two particle species (or single-species systems with kinematic constraints) has demonstrated the existence of spontaneous symmetry breaking, long-range order and phase coexistence in nonequilibrium steady states, even if translational invariance is not broken by defects or open boundaries. If both particle species are conserved, the te...

متن کامل

Critical Phenomena and Diffusion in Complex Systems

The nonlinear dynamics of complex systems is one of the most exciting and fastest growing branches of modern sciences. This research area is at the forefront in interdisciplinary research and it has an increasingly important impact on a variety of applied subjects ranging from the study of turbulence and the behavior of the weather, through the investigation of electrical and mechanical oscilla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2023

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.9324